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A possibility is indicated of appearance of density excursions in one~dimensional
unsteady fluid flows near the critical point of the phase equilibrium, resulting
from the singularities in the equation of state,

The present investigations are concerned with the question, whether the classi-
cal solutions of the problem and the initial conditions for the one-dimensional
unsteady gasdynamic equations can become infinite in the nonisoentropic case,
Here we have to comider a system of three quasilinear hyperbolic equations
which, as we know [1, 2], usually have unbounded solutions, On the other hand,
the system of gasdynamic equations has a number of specific properties, Of those
the most important is the presence of a single invariant, i, e, of a function which
remains bounded [1], Another important property consists of the fact that the
generalized Riemann invariants satisfy multi-dimensional integral equations of
Volterra type, in which the cone of integration is represented by the domain of
definition of the hyperbolic equations and the boundedness of the solution follows
from the fine properties of the integrability of the kernel, In the terms of the
gasdynamic equations the latter lead to restrictions imposed on the equations of
state, The properties themselves follow from the boundedness of the variation of
entropy along the sonic characteristics and from the weak linearity (tangency)
of the entropic characteristics [3],

The conditions which must be imposed on the equations of state in order to secure the
boundedness, are expressed by the following inequalities 31
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Gasdynamic effects at the critical point of the phase equilibrium 157

Here p is the density, § is entropy per unit mass, V is the specific volume, p=p(p,5)
is the pressure, 7T is the temperature and cy is the heat capacity of a unit mass,

We consider the case when the second of the above restrictions does not hold [3]. This
occurs at the critical point of the phase equilibrium in accordance with the phenomen=
ological theory [4] based on the fact that heat capacity has a logarithmic singularity,

A possibility is indicated of appearance of gasdynamic effects, consisting of localized
unbounded density excursions and associated with the properties arizing from the unboun-
dedness of the solution of the gasdynamic equations obtained in [3, 5],
We consider the Cauchy problem for the gasdynamic equations in Lagrangian coordi-
nates with the dissipative terms absent
v du du 0 ds .
-5?—-5?=0, —a-;--{'--ans:O, 5 =0
u(0,q) = 0,v(0,9) = 0,8, (0,9) =8, (g), g E[a, ],
s=S =S, v=V—-V,, 6=7~T,
where S,, 7, and V, denote the values which the thermodynamic functions assume at
the critical point, ¢ is time, ¢ is the Lagrangian mass coordinate and « is velocity,

It is assumed that 8; () is a sequence of symmetric nonnegative smooth functions
possessing a unique local minimum at the point ¢ = 0, the minimum tending to zero
along the functional sequence, In other words, at the initial instant we have a homoge-
neous phase with critical density, and the state at the point ¢ = 0 is nearly critical,

The pressure near the critical point is composed of two parts [4], the regular part p,
and the irregular part p,. The regular part is represented by a series in the powers of ¢
and v and, within the accuracy of up to the higher order terms, it has the following
form (6] pr= — ABv — Br*/3 + f(0) (A = const, B = const)
where j(6) is an undefined regular function, In accordance with [4] the principal term
of the expansion for f (8) near the critical point is equal to £8, where £ = const > 0.
The irregular part is equal to (9F, / dv)y, where F, represents an irregular supplement
to the free energy [4]

Fy = b ln [(8 + Br®)® + p24] + 0% (B / 1?)
Here % is a bounded function (of no importance in what follows), «., p and ¥ = const,
and a1 < 0.
The irregular supplement to the heat capacity is [4]

ey, = 2a1ln [(6 + o) + y2uA] A+ I B/ 1?) @)

where h; is another bounded function also unimportant in the following,

It can be shown that under these conditions the adiabatic speed of sound a = (ap/ap)é”
tends to zero on approaching the critical point, We also find that as (8p/9pd.S)(dp/dp)gt=
(0 In @/ 08), the second restriction of (1) does not hold,

Let us now write an expression for the pressure near the critical point as the function
of the density and specific enwopy during, at least, the initial instant, i, e, when v = 0,
so that the resuits of 3, 5] can be subsequently applied,

By (2) we have the following relation for the derivative (8§ / 48), near the critical
int
po (05/080),=Cy,/ T+ (2u/ T)In[(® — B —y**] - (R, B /0D / T

where ¢y, denotes the regular part of the heat capacity,



158 V.I.Tsurkov

In the exact theory [4] the part of the coefficients accompanying the logarithmic
terms in the irregular parts of the free energy and heat capacity is played by the unde-
termined regular functions of § and v which are not zero when 6 = v = 0. It can there-
fore be assumed that the logarithmic part of the derivative (45 / 89), near the critical
point, which will be important in what follows, has the form

(@S / 38)y10g = @pV1 In{(® + Br?)? - p2A],  (ag, Y1 = const, 2, < 0, 11> 0) ()

Let us now replace (3) by
(83 / 90), = agV¥* (8 4 Br®)™" (as = const > 0) (4)

where ¢ is a small positive number, This means that we have replaced the logarithmic
growth of heat capacity by one increasing as a small power, which simplifies the com-
putations considerably without affecting the final result. Moreover we achieve further
simplification by neglecting the term y*#, as its effect in the initial form of the Cauchy
problem at the first instant, may be assumed insignificant,

Integrating (4) we obtain, with the accuracy of up to an arbitrary function », the fol-
lowing principal contribution to the entopy

s = V" (8 4+ Bor)fit /(1 —e)

from which we have
' B=(1 —e)®p" sy — B (0=1/(1—¢)

The corresponding principal contribution to the irregular part of the pressure has the form

V@ + BT ¥ (6 4 Bt 28y
T—o2—e T =g
Since v=0 and p, ~ 8(2"® we find, when investigating the initial Cauchy problem,
that the principal contribution is made by the term £8 of the regular part of the pres-
sure, When ¢ = 0, this conmribution is
pr=E (1 — e)*po"s“a;® 6

pr=

Equation (5) is of the type p=A%p¥*S2%/y,, where 7, is replaced by 1,0 and 2e=q.
When the Cauchy problem with the initial entropy S%g) == $og® 4 S},n and density

po(g) = po(p°, SO, B, S!, = comst > 0) was considered, the solution obtained in [3, 5]
for this class of equations of state behaved as follows, The pressure gradients by virtue
of the entropy gradients, force the gas to flow into the point ¢= 0. If af&[0.5, 1] and
the maximum density at the point ¢ = 0 in the corresponding solution tends to infinity
as Sjnm ~ 0., When aff = 1, the time in which the maximum is reached, tends to a
finite value (the "break-through"-type unboundedness), when af < (0.5, «B*(vo)), the
time tends to zero (the "excursion”-type unboundedness [5]).
Considering the sequence of temperatures 89(g) = 69" + 8, and 8iin — 0, where
8, p = const > 0 near the critical point we find, that as so(q) ~ ¢*“, the condition
0.5 < af < 1 yields 1 < u < 2. Naturally the density does not become infinite because,
e, g, the expression for p; contains another term which gives rise to counter pressure with
increasing density, All the same, if formally B — U, then the maximum density tends
to infinity, i, e, at some small values of B one can obtain a swong, localized density
peak near the critical point of the phase equilibrium,
Note, It was communicated to the author by the referee that density excursions are

indeed observed in practice in the energy generators, in the flows near the critical point
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of the phase equilibrium,
In conclusion the author thanks L, A, Galin, S, 1, Anisimov and M, Ia, Azbel' for asses-
sment of this paper,
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We consider a non-self-similar problem of point explosion in a detonating gas,
in a medium of variable initjal density, Analytic expressions are obtained show-
ing the dependence of the pressure, density and gas velocity on the distance from
the origin of explosion and the radius of detonation wave, the latter obtained by
solving a differential equation, Computations are performed for the cases of
spherical and cylindrical symmetry for various values of the adiabatic exponent,
and the variation of initial density exponent,

Let us consider a perfect gas which is inviscid and non~heat~-conducting, Suppose that
an instantaneous explosion of finite energy £, occurs at the instafit ¢t = 0 in an unboun
ded medium atrest (»1 = 0) at a point, or along a plane, or along a staight line [1].
The explosion generates a smong shock wave which propagates through the gas and hearts
it up to the state at which rapid combustion becomes possible, Assumning that the energy
£, is large and much larger than the amount of energy ¢: released during the gas com-
bustion, we can infer that the gas burns in the direct vicinity of the shock-wave front,

In this case we can consider the shock wave and the chemical reaction zone together,
as a single surface of a swrong explosion with release of heat, i, e, treat it as a detonation-
wave front,



